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Convection and macrosegregation in directionally solidified hypoeutectic Pb-38 wt pct Sn and hy-
pereutectic Pb-64.5 wt pct Sn have been examined during upward and downward growth. Temper-
ature fluctuations are observed along the length of the melt column during downward growth. With
increasing Rayleigh number, these fluctuations change from none, to cyclic, to time periodic having
multiple harmonics, and finally to random. At the higher convective driving force of 350 K tem-
perature inversion, the transverse magnetic field decreased convective levels, strong random tem-
perature fluctuations (flows) becoming smaller and periodic. The maximum field of 0.45 T was unable
to completely eliminate convection. For the lower convective driving force of 150 K temperature
inversion, the 0.05 T magnetic field decreased flows, and at 0.15 T, the field caused a dramatic
decrease in the characteristic frequency of the temperature fluctuations, indicating a change in the
nature of the flow, the waveform of the temperature fluctuations changing from sinusoidal to a pulsed
wave. Temperature fluctuations and time delays between thermocouples were used to estimate flow
velocities. Irrespective of the convection in the bulk melt (ahead of the mushy zone), longitudinal
macrosegregation occurs only if the interdendritic melt mixes with the bulk melt.

I. INTRODUCTION

MACROSEGREGATION during dendritic growth of
alloys is caused by convection in the bulk and interdendritic
melt, settling or floating of dendrite fragments, and the fluid
flow due to solidification shrinkage. Directional solidifica-

tion experiments have been used to study relationships be-
tween thermosolutal convection and macrosegregation in a
range of binary metallic alloys, fl ,11Direct visual observa-
tion of convection during dendritic growth has been limited
to transparent model analogues, such as NH4CI-k-H20.H, IzA31

Temperature signals from thermocouples, kept in the melt,
have been used to examine convection in the bottom or side
heated metallic and semiconductor melt columns. [9,11.14-171

These studies have been concerned with either a stationary
melt column or directional solidification with a planar liq-
uid-solid interface. No such study is available for dendritic
arrayed growth in a metallic alloy.

Convection in fluids is generally caused by unstable den-
sity gradients. Unstable density gradients can be caused by
variations in composition and temperature. For example,
upward directional solidification (with melt on top of the
solid) of an alloy with a solute more dense than the solvent
is both thermally and solutally stable, as is the case with
the hypereutectic (tin concentration larger than eutectic) Pb-
64.5 wt pct Sn. Solidification of that same alloy downward
would be solutally and thermally unstable, the cool, solute-
rich, heavier liquid near the solid-liquid interface creating
the potential to naturally convect downward. The upward
growth of an alloy with a solute less dense than the solvent,
for example, the hypoeutectic (tin content less than eutec-
tic) Pb-38 wt pct Sn, is thermally stable, but solutally un-

stable, [1,51 and may lead to thermosolutal convection.
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Solidification of this alloy downward would be thermally
unstable and solutally stable. It is believed that convection
in metals can be suppressed by application of a magnetic

field, as has been demonstrated during plane front solidi-
fication of several electronic materials.[ tsl However, a direct

examination of the influence of magnetic field on convec-
tion during dendritic growth of metallic alloys has not been
carried out.

The main purpose of this study was (1) to study natural
convection during dendritic arrayed growth of lead-rich,
hypoeutectic, lead-tin alloys, both under thermally stable
(melt on top and solid below) and thermally unstable (solid
on top and melt below) conditions; (2) to examine the in-
fluence of magnetic field (applied transverse to the alloy
growth direction) on convection; and (3) to correlate the
observed temperature, convection, and macrosegregation.
Since the solutal banding caused by convection is easier to
observe during directional solidification of near eutectic al-
loy compositions, the tin-rich hypereutectic, Pb-64.5 wt pct
Sn, alloy was also examined during downward growth.

II. EXPERIMENTAL PROCEDURE

About 24- to 30-cm-long Pb-Sn feed stock samples were
obtained by induction melting a charge (lead and tin, 99.99
pct purity) under an argon atmosphere in a silica crucible
and pushing the melt into evacuated silica tubes (0.7-cm
i.d.) with the help of argon pressure. The silica tubes con-
tained either two or four chromel-alumel thermocouples
(TC1, TC2, TC3, and TC4: 0.01-cm diameter wires kept in
closed-end silica capillaries, 0.06-cm o.d.) which were lo-
cated along the sample length with a separation distance of
about 1.5 cm. After sealing one end, the silica tubes con-

taining these samples were evacuated and the top 15- to 20-
cm length of the cast specimen was melted. Directional
solidification was carried out in the high-temperature direc-
tional solidification furnace by raising (or lowering) the fur-
nace assembly at various growth speeds (either 8/zm/s up,
8 /zm/s down, or 0 /am/s) with respect to the stationary
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Fig. 1--Schematic of the high-temperature directional solidification

furnace, showing the magnetic field perpendicular to the ampoule axis,

the four thermocouples each spaced about 1.5 cm apart, with the ampoule

fixed and the furnace moving.

sample. Figure 1 is a schematic of the furnace, with addi-
tional experimental details presented elsewhere, ttl The spec-
imens were directionally solidified upward (melt on top of
the solid) and downward (solid on top of the melt). Tem-
perature profiles were recorded during translation of the fur-
nace and also while maintaining the furnace assembly
stationary at various locations. To examine different con-
vective conditions, several hot zone temperatures were em-
ployed. The influence of 0 to 0.45 T magnetic field, applied
transverse to the alloy growth direction, on the thermal pro-
files was examined. Ingot temperature measurements were
analyzed using fast Fourier transformations (FFTs).

Longitudinal and transverse microstructures were exam-
ined in the unetched condition by standard optical metal-
lography techniques. Two-millimeter-thick slices, machined
along the length of the directionally solidified specimens,
were analyzed for their tin content (C,) by the "wet" chem-
istry technique atomic absorption spectroscopy to examine
the longitudinal macrosegregation. The ratio of the distance
solidified to the initial melt column length is taken as the
fraction solidified _).

A 1.25-cm-diameter, 11-cm-long, hypereutectic Pb-64.5
wt pct Sn ingot from a previous study is examined in more
detail here.tlg_ This ingot, of composition close to the eu-
tectic, yields a continuous examination of convective flow,
aspect ratio, and Rayleigh number in the downward solid-
ification mode. This ingot was solidified downward in the
bulk undercooling furnace with two thermocouples in the
melt, 9 cm apart, at a constant thermal gradient (4.6 K
cm -1) and cooling rate (7.7 K h-l). Heaters at both ends
were used to first induce an end-to-end temperature gradi-
ent. The temperatures of the two ends were then lowered
at a constant rate. Thus, solidification was accomplished
without movement of the furnace. It should be noted that

although the global thermal gradient and cooling rate were
constant, at certain times convective flows did cause local
variations in the gradient and cooling rate. Wet chemical

analysis at 0.5-cm intervals along the length of the ingot
was used to obtain the composition variation. Details as-
sociated with this ingot can be found in Reference 19; how-
ever, of importance here is that the temperature gradient,
G_, was linear and imposed across the whole length of the
ingot. Thus, as solidification progressed from the top down,
the temperature difference between the solid-liquid inter-
face and the hot bottom of the ingot (later defined as the
temperature inversion, AT) continuously decreased. The
height of the melt (later defined as h) also decreased. By
contrast, AT and h were varied between Pb-38 wt pct Sn
solidification runs by changing the hot zone temperature;
however, once set, AT and h were constant for a particular
Pb-38 wt pct Sn run.

IlL RESULTS

A. Convection under Destabilizing Thermal Profile

The in sita thermal profiles, recorded during downward
(solid on top and liquid below) directional solidification of
hypoeutectic Pb-38 wt pct Sn at 0.8 lams -l (Figure 2(a)),
and the hypereutectic Pb-64.5 wt pct Sn ingot (Figure 2(b))
show extensive temperature fluctuations. Some temperature
fluctuation is observed even in the mushy zone (mushy
zone tips are assumed to be at the liquidus temperature of
the bulk composition and the mushy zone base at the eu-

tectic temperature). Such thermal fluctuations were not ob-
served during upward (liquid on top and solid below)
growth of the hypoeutectic Pb-38 wt pct Sn alloy, as shown
in Figure 2(c).

The nature of thermal fluctuations during downward so-
lidification was observed to depend upon the overall tem-
perature inversion (AT) in the melt column and also on the
thermal gradient at the particular longitudinal location or
place in the gradient region being considered, termed the
local thermal gradient in the melt (GI). The temperature
inversion refers to the unstable temperature difference be-
tween the hot liquid below, Th, and the cool liquid above,

T,_p,the solid-liquid interface• For the hypereutectic Pb-64.5
wt pct Sn ingot, AT varied continuously as solidification
progressed and could be found easily by multiplying the
melt height by the thermal gradient. For the Pb-38 wt pct
Sn alloy, AT was varied by changing the hot zone temper-

ature (where T_ip = 520 K was used). We will describe two
typical hot zone temperatures. The hot zone temperature of
870 K corresponds to the more severe temperature inver-
sion (AT = 350 K for a melt column length of 15 cm) and
the hot zone temperature of 670 K to the less severe in-
version (AT = 150 K for a melt column length of 12 cm).

1. Influence of temperature inversion
For the AT = 350 K inversion, the temperature fluctua-

tions were observed to be random, as indicated by a typical
thermal response (Figure 3(a), local melt temperature =
628 K) and its FFT (Figure 3(b)). For the AT --- 150 K
inversion, the fluctuations were not as random. Instead,

there was a tendency for the signal to contain either one
dominant frequency or several of its harmonics (Figure 5).
Figures 4(a) and 5(a) show typical thermal responses from
four thermocouples, located at varying distances from the
tip of the mushy zone, and their FFTs (Figure 5(a)). The
thermocouples, TC 1 through TC3, located about 4, 2.5, and
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Fig. 2 In situ thermal profiles, recorded during directional solidification. (a) Downward growth of lead-rich (hypoeutectic) Pb-38 wt pet Sn (0.8 g,rn s *,

hot zone temperature = 873 K, profiles from TC1 and TC2). (b) Downward growth of tin-rich (hypereutectic) Pb-64.5 wt pet Sn. t_9)(c) Upward growth

of hypoeutectic Pb-38 wt pct Sn (hot zone temperature = 873 K).

1 cm from the dendrite tips, appear to show one dominant
frequency, about 0.06 Hz. Even the fourth thermocouple,
TC4, which was located inside the mushy zone (about 0.5
cm from the dendrite tips), contains the 0.06 Hz signal,
together with some other frequencies.

Figure 4(a) shows the temperature fluctuations, with the
AT = 150 K inversion, on a broken temperature scale. All
four thermocouples show the same dominant waveform
with an approximately 16-second period. The temperature
oscillations are shifted in time as indicated by the dashed
lines in Figure 4(a); thus, it appears that a temperature rise
(or drop) near the interface (TC4) travels along the length

of the ingot down, finally being sensed by TC 1 about 10
seconds later. The timing and phase shifting of these flows
may shed light on the exact mechanics of the flow and will
be discussed in more detail in a later section.

2. Influence of local thermal gradient
As shown in Figure 2(a), the magnitude of the temper-

ature fluctuations is low in the hottest region of the melt,
830 to 840 K. Fluctuations increase with decreasing melt
temperature, are maximum at about 650 K, and begin to
decrease with further decreases in the local melt tempera-
ture. This is more clearly evident in Figure 6(a), which
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Fig. 3_Thermal _ during downward growth of hYlx_utectic Pb-38 wt
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temperatta, e fluctuations corresponding to the local melt temperature = 628

K. (b) The FFT of temperature fluctuations shown in (a).

combines temperature fluctuation data recorded by TC 1 and
TC2, shown as 4DI, while the furnace was held stationary
at various locations, and uses one standard deviation from
the mean to represent the magnitude of the temperature
fluctuation. Data from several Pb-38 wt pet Sn alloy ex-
periments have been included. The 4DI, 4EI, 4FI, and 4GI
are for the more severe temperature inversion (AT = 350

K) and 4HI is for the less severe temperature inversion (AT
= 150 K). The filled square symbol (4JI) is with the ap-
plication of a 0.45 T magnetic field during growth with AT
= 350 K. Dashed lines showing the location of the mushy
zone are also included. These temperature fluctuation data

have been replotted in Figure 6(b) as a function of G_, the
local thermal gradient in the melt.

The magnitude of the random temperature fluctuations,
observed for the more severe temperature inversion in the
melt, increases with increasing G_. This trend is also ob-
served for the oscillatory temperature fluctuations, observed
during growth under less severe temperature inversion in
the melt. However, for the same G_, the temperature fluc-
tuation is significantly greater when AT = 350 K than when
AT = 150 K.

3. Influence of transverse magnetic field
The response of the temperature fluctuations to an ap-

plied magnetic field was observed to depend upon the ex-
tent of temperature inversion and the magnetic field
strength.

a. More severe temperature inversion
Figure 7(a) shows how a typical temperature fluctuation

responds to the application of the higher transverse mag-
netic field of 0.45 T for downward growth with AT = 350
K. With the application of the magnetic field, the random
fluctuations initially decrease in magnitude and then pick
up a constant amplitude and frequency. This behavior is
not an artifact of the magnetic field, as verified by the ther-
mocouples kept in the solid portion of the specimen. It
should also be mentioned here that the application of mag-
netic field does not produce any temperature oscillations
for the thermally stable and solutally unstable growth con-
ditions (melt on the top and solid below).

The temperature fluctuations which were random became
oscillatory with the application of the magnetic field, con-
taining either one dominant frequency or several harmonics.
The fluctuations with initially larger amplitude usually
show multiple harmonics, as shown by a typical FFT (Fig-
ure 7(b)). This signal contains harmonics of 0.11 Hz. Ap-
plication of the magnetic field reduces the magnitude of the
temperature oscillation; for example, a ___2.1 K fluctuation
with the field vs _ 7 K without (Figure 6(a), comparing 4JI
and 4DI at about 700 K). The small (_+ 0.47 K) amplitude
fluctuations present, for example, near the base of the den-
drites, which were random in the absence of magnetic field,
became sinusoidal (containing one dominant frequency), as
seen by a typical FFT (Figure 7(c)). However, the maxi-
mum available transverse magnetic field of 0.45 T was in-
sufficient to completely suppress the convection and
temperature fluctuations under these conditions.

b. Less severe temperature inversion
The temperature fluctuations in the presence of less se-

vere temperature inversion in the melt (AT = 150 K) were
not random but had an oscillatory tendency (Figures 4(a)
and 5). In the presence of a magnetic field, these signals
remained oscillatory, but they became significantly less
noisy as seen by comparing Figures 4(a) through (c). This
is also seen by comparing the FFTs of the thermal re-
sponses of the four thermocouples in the presence and ab-
sence of a magnetic field (Figures 5(a) through (c)). In the
presence of 0.05 T magnetic field, the three temperature
profiles, TC1 through TC3, recorded at 4 cm (653 K), 2.5
cm (611 K), and 1 cm (563 K) from the dendrite tips, and
TC4, recorded in the mushy zone (0.5 cm away from the
dendrite tips), showed oscillatory signals with the same
0.06 Hz frequency. The temperature fluctuations, as char-
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Fig. 4--Thermal response, shown on a broken temperature axis, during downward growth of hypoeutectic Pb-38 wt pct Sn (hot zone temperature = 673

K and AT = 150 K) recorded by four thermocouples separated by 1.5 cm. TCA is just inside the mushy zone and on top, with TC3, 2, and 1 below and

further out in the gradient region. Phase shifts among thermocouples are shown by the dashed lines: (a) no magnetic field applied with average phase

shift between TCA and 3 (P4 3) of 1.9 s, P3 2 = 3.1 s, and P2 , = 4.8 s; (b) with 0.05 T magnetic field applied, P4 3 = 6.0 s, P3 2 = 4.6 s, and P2 _ =

4.1 s;and(c) with 0.15 T magnetic field, P4 3 = 67 s, P3 2 = 14s, andP2 _ = 13 s.

acterized by the standard deviation of temperature, with AT
= 150 K, were +0.79 K with no magnetic field, +0.49 K
at 0.05 T, and _ 1.54 K with the 0.15 T field. At moderate

magnetic field, 0.15 T, the 0.06 Hz signal vanished, yield-
ing a slower cyclic signal with 0.005 Hz frequency (Figure
4(c) and 5(c)). Interestingly, the temperature waveform
changes from a predominantly sinusoidal wave at 0.05 T
to a pulsed wave when the magnetic field is 0.15 T. This
change in the waveform makes comparison of the temper-
ature fluctuations through the standard deviation from the
mean less reliable, the waveform at the 0.15 T field being

better characterized by the approximately +5.5 K pulse ris-
ing from a baseline (Figure 4(c)). This type of pulsed flow
is indicative of the flow which might cause composition
striations during solidification. It should be mentioned that
we closely examined the FFTs of the lower magnetic fields
(zero, Figure 5(a) and 0.05 T (Figure 5 (b)) and found no

0.005 Hz peak. As shown in Figure 5, the amplitude of the
FFT power spectrum for the new 0.005 Hz signal was an
order of magnitude larger than that observed at 0.05 T, or
without the application of the magnetic field, showing the
purity and strength of this pulsed flow.

B. Microstructure

Figure 8 shows typical microstructures observed for the
Pb-38 wt pct Sn alloy directionally solidified: (a) upward
and (c) downward. For upward growth, the distribution of
primary dendrites was uniform across the entire specimen
cross section, except for occasional channel segregates ob-
served near the specimen periphery, which were continuous
along the length of the directionally solidified specimens.I_l
The length of the primary dendrites was uniform across the
entire mushy zone, as shown in the longitudinal micros-
tructure at the quenched liquid-solid interface (Figure 8(a)).

The uniform distribution of primary dendrites was also ev-
ident on the transverse section, as shown in Figure 8(b).
For downward growth, the length of the primary dendrites
in the mushy zone was not uniform, as shown in the lon-
gitudinal microstructure at the quenched liquid-solid inter-

face (Figure 8(c)). Several dendrite clusters can be observed
to protrude ahead of their neighboring dendrites. This re-
suits in a very nonuniform distribution of primary dendrites
in the directionally solidified portion of the specimen. This
is evident from Figure 8(d), which shows microstructures
from two regions on the same transverse section. Isolated

pockets of tin-rich regions were observed on the specimen
cross section. However, these were not continuous along
the length of the directionally solidified specimens, as was
the case with the previously described channel segregates.
Such dendrite clustering has been observed in hypoeutectic
Pb-AuI71 and AI-Cu alloys,12ol solidified upward, and Pb-40
wt pct Sn, solidified downward. I61

Figure 9 shows the macro- and microstructure along the
length of the hypereutectic Pb-64.5 wt pct Sn alloy ingot
solidified downward: 191Bands of irregular convex and con-
cave striations were observed in the top 5-cm portion of
the sample (length of the initial melt column = 11 cm).
The top 4.4 cm of this region contained tin-rich dendrites
(and eutectic), and the rest contained aligned eutectic only.
The structure of the Sn-rich ingot evolves from dendritic to
eutectic because of Pb enrichment of the liquid (due to

primary Sn dendrite solidification) and the movement, as
expected, of the liquid and solid compositions along the
liquidus and solidus until the eutectic is reached. Irregular
striations ended abruptly at a melt column height (h) of 6
cm and were replaced by regular striations with a charac-
teristic frequency of 0.028 Hz. The microstructure in this
region mostly consisted of aligned lead-tin eutectic. For the
melt column less than 4.4 cm, no striations were observed,

and the microstructure consisted of aligned eutectic.

C. Macrosegregation

Macrosegregation along the length of the directionally
solidified hypoeutectic Pb-38 wt pct Sn ingot is shown in
Figure 10(a), where variation in the solute content (C/Co)
is plotted as a function of fraction solidified. The open sym-
bols correspond to the directionally solidified portion and
the filled symbols to the quenched melt. This alloy, when
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directionally solidified upward, Ill showed a systematic lon-
gitudinal macrosegregation (triangular symbols in Figure 10
(a)). Notice the significantly higher tin content of the
quenched melt as compared to Co. For downward growth,
there is large scatter in the tin content along the direction-
ally solidified length; however, there is no systematic lon-
gitudinal macrosegregation. Notice that the tin content of
the quenched melt portion is nearly equal to Co. The down-
ward grown hypereutectic Pb-64.5 vet pct Sn ingot, on the
other hand, does show longitudinal macrosegregation (Fig-
ure 10(b)).

IV. DISCUSSION

A. Correlation between Convection and

Macrosegregation

Let us examine typical specimen configurations and the
resulting temperature, composition, and melt density pro-
files during directional solidification of a binary alloy (Fig-
ure 1 l(a)). The composition of the melt increases from Co,
the original solute content of the bulk melt, to C, at the
dendrite tips and to C_., the eutectic composition, at the base
of the dendrites. The increasing solute content in the melt
may decrease its density (hypoeutectic Pb-38 wt pct Sn) or
increase it (hypereutectic Pb-64.5 wt pct SnF191or hypoeu-
tectic Pb-8 wt pct AuIV]).

During downward growth (Figure 11 (b)), the temperature
profile is expected to be destabilizing, providing a driving
force for natural convection for the Pb-38 wt pct Sn alloy.

The solutal profile, however, would be stabilizing within
the mushy zone and in the immediate vicinity of the den-
drite tips. One would, therefore, expect natural convection
to occur in the bulk melt but not in the mushy zone. During
upward growth of hypoeutectic Pb-38 wt pct Sn (Figure
1 l(c)), the temperature profile would be stabilizing against
natural convection, but the composition profile would be
destabilizing, both within the mushy zone and in the im-
mediate vicinity of the dendrite tips. One would, therefore,
expect natural convection to occur within the mushy zone.
Upward growth of the hypereutectic Pb-64.5 wt pct Sn or
Pb-8 wt pct Au alloy, with melt on top and solid below
(Figure 1 l(d)), would produce stabilizing thermal and so-
lutal profiles in the bulk melt and in the mushy zone. Con-
vection would, therefore, not be expected. Downward
growth of the hypereutectic Pb-64.5 wt pet Sn (Figure
1 l(e)), however, would produce unstable thermal and so-
lutal profiles in the bulk melt and also in the mushy zone.

One would, therefore, expect convection to occur.
It is interesting to note that despite extensive convection,

as evidenced by the thermal fluctuations (Figure 2(a)), the
hypoeutectic Pb-38 wt pct Sn alloy, when directionally so-
lidified downward (Figure 1 l(b)), did not show any longi-
tudinal macrosegregation (Figure lO(a)). However, upward
growth of this alloy (Figure 1 l(c)) resulted in extensive lon-
gitudinal macrosegregation (Figure lO(a)), even though no
temperature fluctuations were observed (Figure 2(c)). The
longitudinal macrosegregation is indirect evidence of con-
vection, but temperature fluctuations have never been ob-
served during our intensive examination of upward growth
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of hypoeutectic Pb-Sn alloys (Co varying from 10 to 58 wt

pct tin, growth speed varying from 0.3 to 66 p,m s -I, and
the hot zone temperature varying from 570 to 1070 K).

Macrosegregation along the length of the directionally
solidified samples can result only in the presence of signif-
icant mixing between the interdendritic liquid and the bulk
melt. Convection in the bulk melt, alone, cannot produce

longitudinal macrosegregation. This is demonstrated by the
absence of longitudinal macrosegregation for the downward
growth of the hypoeutectic Pb-38 wt pet Sn, where because

of the stabilizing conditions present in the interdendritic
melt (Figure 11 (b)), the convection in the bulk melt is not
able to penetrate significantly into the mushy zone. Even
vigorous convection, produced by stirring the bulk melt,
has been found to be ineffective in producing longitudinal
macrosegregation during an upward dendritic arrayed
growth of Sn-2.5 wt pct Ag (schematic Figure 1 l(d)), due
to the stabilizing density profile within the interdendritic
melt. I_l For cases such as these, where interdendritic per-
meabilities are low, longitudinal macrosegregation is pro-
duced only when the interdendritic density profile is
destabilizing. This is the case with the hypoeutectic Pb-38
wt pct Sn, directionally solidified upward (schematic in Fig-
ure l l(c)), where convection occurred, possibly as fluid
"plumes" from the mushy zone rising into the bulk melt,
as has been observed during dendritic growth of a trans-
parent alloy, NH4C1 + watery 21The flow, however, is lam-
inar. Therefore, any location in such a convection cell
would experience a constant temperature as a function of
time, and no temperature fluctuation would be recorded, as
is experimentally observed. Application of a transverse
magnetic field would introduce an anisotropy in the flow,
because it would reduce the velocity of the fluid flowing
normal to the applied field. This has been observed to dis-
tort the mushy zone morphology near the tips of the den-
drite array, especially for the growth conditions with large
driving force for convective instability.I2]l However, this
does not affect the extent of mixing between the interden-
dritic and bulk melts, as evidenced by the identical longi-
tudinal macrosegregation profiles observed in the
specimens, grown with and without the application of a

transverse magnetic field, r2_]The growth condition, sche-
matically shown in Figure 1 l(e), also produces longitudinal
macrosegregation (Figure 10(b)) because the convection
from the bulk melt is able to penetrate deep into the mushy
zone due to the destabilizing interdendritic density profile.
This has also been observed in Sn-31 pet Pb and Pb-8 pet
Au alloys. 16]

For growth conditions, schematically shown in Figure
l l(b) (Pb-38 wt pet Sn, solidified downward) and Figure
1 l(d) (Pb-8 wt pet Au rT1or hypoeutectic A1-Cu alloy, I221
solidified upward), no longitudinal macrosegregation is pro-
duced. Instead, as shown in Figure 8(c), a transverse ma-
crosegregation, in the form of dendrite clustering (dendrite
steepling), is produced. The length of the primary dendrites
is not constant in the entire mushy zone. In the most severe

manifestation of such a transverse macrosegregation, por-
tions of the mushy zone do not contain any primary den-

drites, even at the base of the mushy zone. The convection,
responsible for such transverse macrosegregation, is con-
fined to the immediate vicinity of the dendrite tips. As orig-
inally pointed out by Burden et a1.1221for hypoeutectic
A1-Cu alloys, dendrite steepling commences when one pri-
mary dendrite in the dendritic array accidently leads (or
lags) its neighbors in growth. As schematically shown by
the dotted line profile of a leading dendrite in Figure 11 (d),
this suppresses the growth of the neighboring dendrites,
which are forced to grow into a region made solute rich,
because of the solute rejected into the melt around the tip
of the leading dendrite. The solute-rich heavier melt flows

down, further suppressing growth of other neighboring den-
drites, and causes a distorted liquid-solid interface at the
dendrite tips. A similar phenomenon would be expected to
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occur during downward growth of hypoeutectic Pb-38 wt
pct Sn (Figure 1 l(b)), as pointed out by Verhoeven eta/. [6]
As shown by the dotted line profile of a leading dendrite
in Figure 1 l(b), the lighter, solute-rich melt would flow

upward from near the tip of the leading dendrite and sup-
press the growth of its neighboring dendrites. This would
also result in dendrite steepling, a nonuniform dendrite
length in the mushy zone.

The structure of the Pb-38 wt pct Sn ingot indicates that
some dendrites are highly fragmented and in regions of low

solid fraction. Free, unattached dendrites in these regions
are able to sink, thereby moving into hot liquid and re-
melting. These phenomena would mitigate solute trans-
ported from the region of the dendrite tips and
macrosegregation.

B. Temperature Oscillations during Downward Growth

Convection due to the destabilizing thermal gradient has
been examined in vertical columns of liquid metalsl_g,15_
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(mercury and gallium), semiconductors t__._71(InSb), and wa-

ter, o61 as well as in gases. I231It has been observed that the

nature of the convection depends upon three factors: (1) the

Rayleigh number (Ra = gfl ATh3/_v, where g is the ac-

celeration due to gravity, /3 is the volumetric thermal ex-

pansion coefficient, AT = Tho, -- T,p is the temperature

inversion over a melt height, h, K is the thermal diffusivity,

and v is the kinematic viscosity); (2) the Prandtl number:

v/K; and (3) the aspect ratio hid (d is the inner diameter of

the cylinder). Figure 12, from Reference 17, shows the re-

lationship between the Rayleigh number and aspect ratio
for the onset of various convective modes. The broken

curve, at the bottom, corresponds to the onset of steady-

state convection at a critical Rayleigh number (Ra,_). Here,

the temperatures inside the melt are steady. A transition to

unsteady, time-periodic flow occurs at a higher Rayleigh

number (Ra¢2) (indicated by the solid curve), which results

in oscillatory temperature fluctuations. At a still higher

Rayleigh number (Ra¢3) (indicated by the dotted curve at

the top), a transition from time-periodic to unsteady tur-

bulent flow occurs, which causes random temperature fluc-

tuations inside the melt. The longitudinal microstructure of

the downward solidified hypereutectic Pb-64.5 wt pct Sn

alloy (Figure 9) is in agreement with this behavior. For this

specimen, the thermal gradient (Gt) remained constant

while the liquid column height, h, and the aspect ratio of

the melt column, h/d, decreased as solidification progressed.

The unstable temperature inversion, AT, equal to the prod-

uct of G_ × h for the Pb-64.5 wt pct Sn ingot, also de-

creased. The Rayleigh number was therefore continuously

decreased. The striations in Figure 9, changing from ran-

dom to time periodic and finally being absent, are indicators

of the nature of convection in the melt. The striations are

due to changes in growth speed and composition as a result

of the solid-liquid interface coming in contact with a hot

or cold fluid stream. A sudden increase in the growth speed

causes additional solute to be rejected, producing a lead-

rich region in the melt ahead of the liquid-solid interface,

causing the observed striations in the solidified microstruc-

ture. The random and time-periodic striations indicate, re-

spectively, unsteady turbulent and time-periodic flows. The

experimentally observed critical Rayleigh numbers for

these transitions and the corresponding aspect ratios, indi-

cated in Figure 12 (Ra_2 = 3.8 × 10 _ at h/d = 3.53 and

Ra_3 = 1.3 × 10 _ at h/d = 4.80, with Pb-Sn physical prop-

erties taken from References 25 and 26), are in good agree-

ment with previous work in low Prandtl number (Pr

0.02) fluids. It is interesting to note that the observed fre-

quency of the unsteady time-periodic flow, 0.028 Hz (h/d

= 3.5), is also in agreement with the value of 0.027 Hz,

reported for Te-doped GaSb, at the similar h/d = 2.7.It_

Similar regions of turbulence, periodic flow, and steady

thermal conditions were reported by Kim et aLt_l We ob-

served (Figure 5(c)), as have others, t_al turbulence to de-

velop over a series of steps indicated by period-doubling

bifurcations (the presence of harmonics of the primary fre-

quency) in the FFT of temperature.

Because the temperature profiles during downward

growth of hypoeutectic Pb-38 wt pct Sn alloy were not

linear (Figure 2(a)), Rayleigh numbers are difficult to de-

termine. However, reasonable Ra can be determined by tak-

ing the temperature difference between the hot zone and

the dendrite tips to be equal to AT and taking h to be the

distance over which this temperature change would have

occurred had the observed maximum temperature gradient

been constant between the interface (dendrite tips at the

liquidus temperature) and the hot zone. Thus, AT and h

were constant for a particular Pb-38 wt pct Sn run. The

Rayleigh numbers for the previously described two growth

conditions, less severe temperature inversion (AT = 150 K)

and more severe temperature inversion (AT = 350 K), are,

respectively, 1.2 × 106 (h/d = 4.8) and 2.7 × 107 (h/d =

10). The high Rayleigh number, 2.7 × 10 _, lies in the un-

steady turbulent region (Figure 12). One would therefore

expect random thermal fluctuations, as were experimentally

observed (Figure 3). The lower Rayleigh number, 1.2 ×

106, closer to the time-periodic region and below Ra,3, as

determined in the Pb-64.5 wt pct Sn sample, suggests that
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Fig. 9--Macro- and microstructure along a hypereutectic Pb-64.5 wt pct

Sn ingot solidified downwardOg] with irregular striations in the upper

portion of the sample, showing evidence of turbulent flows; regular,

evenly spaced striations near the center, indicating the presence of cyclic

or pulsing flows; and no disturbances in the lower portion of the ingot.

time-periodic temperature variations should be present.
This is in agreement with the observed behavior; the FFT
of the temperature signals tends to contain one dominant
frequency (Figure 5). In particular, at AT = 150 K, with
the application of the 0.05 and 0.15 T fields, the flow
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hypoeutectic, Pb-38 wt pet Sn solidified upward and downward; and (b)

Tin-rich, hypereutectic, Pb-64.5 wt pct Sn, solidified downwardY _j

clearly moved toward sinusoidal and pulsed time-periodic
flows characteristic of lower Ra.

Several possibilities have been suggested in the literature
to explain the previously described time-periodic tempera-
ture oscillations. Rotation of flow axis around the container

axis, [27]flow via three-dimensional spirals rotating about the

axis of suboscillatory flow,m] pulsed flow, flow in the same
direction with varying speed, [_4]and periodic change of flow

configuration of a double roll {tr] have been suggested as
possible flow configurations responsible for the time-peri-
odic temperature fluctuations observed at Ra above Rat2.
Although temperature measurements provide evidence of
time-periodic and turbulent convection, the corresponding

flow patterns have only been observed in high Prandtl num-
ber transparent fluids (water: Pr _, 6.7 [_6]and gases: Pr ,_
1127]). For water, ['6] the single cellular, nonaxisymmetric,
steady-state flow, occurring at the onset of convection, gen-
erated two additional cells at the top and bottom corners of
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the major cell at a higher Rayleigh number. At a still higher
Rayleigh number, a double roll time periodic flow config-
uration resulted which was associated with the unsteady
time-periodic temperature oscillations. Though not
definitively conclusive, our consideration of the present
data indicates that the temperature oscillations are due to

variations in flow velocity mostly along the ampoule axis.

The presence of the fluid moving rapidly down along the
axis is indicated by the consistent phase shift among the
temperature readings of TC 1, 2, 3, and 4. These time shifts

are shown in Figure 4, as are the change in the phase shifts
as the magnetic field is imposed. The phase shifts can be
used to determine the movement of the longitudinal wave
and its velocity, which is an indication of fluid flow veloc-

ities. The velocity of the wave (the axial flow) is simply
the distance between the thermocouples divided by the du-
ration of the phase shift. Averaging the shifts of three
waves, using only the shift between TC2 and 3, the axial
wave velocities for AT = 150 K, with zero, 0.05, and 0.15
T fields, were 4.8 × 10 -3, 3.3 × 10 -3, and 1.1 × 10 -3 m/s,
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respectively. Thus, as the magnetic field was increased, the
phase shift between TC2 and 3 became longer, indicating
that the flow velocities decreased with the application of

the magnetic field. Further examination of the flow is being
done numerically and will be presented in a later article.

C. Elimination of Convection

During directional solidification of alloys, the thermal
and solutal gradients existing at the tips of the primary den-
drite array, together with the alloy physical properties (liq-
uid-solid surface energy and its anisotropy, solutal partition
coefficient, and thermal and solutal diffusivities), determine

the shape of the dendrite tips. The rest of the microstruc-
tural characteristics, such as the primary dendrite spacings,

the microsegregation (composition of the melt at the tip and
in the mushy zone), and the secondary dendrite spacings,
may be correlated with tip shape. Therefore, the primary
focus of the theories, both analytical and numerical, [2s "]

has been to predict the shape of the primary dendrites as a
function of the growth parameters and the alloy physical

properties. These models consider only the diffusive ther-
mal and solutal transports and do not include convection in

their analyses due to the mathematical complexity of the
situation. Our results, and examination of the literature on
the constrained growth of binary metallic alloys, show that
it is not feasible to avoid convection during terrestrial den-
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dritic experiments. The terrestrial directional solidification

experiments, whether upward growth or downward growth,

whether with heavier solutes or lighter solutes, whether

conducted with an applied magnetic field or without, are

always accompanied by natural convection. It has not been

possible to eliminate the convective transports and the as-

sociated problems in order to obtain the dendrite shapes

which are determined by the diffusive transports only. Only

low gravity directional solidification and quench experi-

ments on well-characterized binary metallic alloys can yield

the four critical parameters, the alloy growth speed, the

shape of the primary dendrite tips (tip radius), the thermal

gradient in the melt at the dendrite tips (G'), and the solutal

gradient at the dendrite tips (G'c), required for a meaningful

evaluation of the dendrite growth models. Such experi-
ments have not been carried out to date. Extensive research

by Glicksman and his colleagues, including a recent low

gravity experiment, f361 has demonstrated the significant in-

fluence of natural convection in determining the shape and

growth behavior of free dendrites during their unconstrai-

ned growth. However, "free dendrite growth" experiments,

such as Glicksman's, cannot be used to experimentally

measure the four items, dendrite growth speed, tip radius,

G', and G'c, independently, which is required for a quanti-

tative evaluation of the dendrite growth theories in binary

alloys. Only the two parameters, growth speed and tip

shape, can be accurately measured by "free dendrite

growth" experiments; the other two parameters are acces-

sible only by calculations, which are themselves based upon

the assumption that the theoretical model is valid. Direc-

tional solidification and quench experiments, on the other

hand, can be used to independently measure all four para-

meters. It should also be pointed out that low gravity ex-

periments,I371 for otherwise identical growth conditions, do

not produce the dendrite "steeples" discussed previously,

demonstrating that the convection in the vicinity of dendrite

tips can be eliminated by low gravity.

V. CONCLUSIONS

1. Convection during downward growth, solid on top of the

melt, can produce temperature fluctuations in the melt. With

increasing instability, i.e., a larger Rayleigh number, these

fluctuations change from cyclic (time periodic with a con-

stant frequency), to oscillatory (time periodic with several

harmonics), and finally to random. Application of a trans-

verse magnetic field partially suppresses these flows, as if

the Rayleigh number had been decreased; the random flows

tend to become oscillatory, and the oscillatory flows be-

come cyclic. For the case of the lower temperature inver-

sion, the 0.15 T transverse magnetic field changed the flow,

changing the temperature fluctuations from sinusoidal to

pulsed waves, characterized by a large spike in the tem-

perature-time curve, and greatly decreasing the character-

istic frequency of the flow.

2. In lieu of any applicable flow visualization and numerical

modeling, the phase shifts present among the thermocou-

pies are consistent with our conclusion that the fluctuations

are caused by axial variations in flow velocity. This lon-

gitudinal flow is in the range of 4.8 × 10 -3 m/s with no

magnetic field and 1.1 × 10 -3 rrgs with 0.15 T applied.

3. The convective flow stability diagrams presented by oth-

ers, relating thermal Rayleigh number, aspect ratio, and

convection, are confirmed and in good agreement with our

results.

4. Macrosegregation along the length of the directionally

solidified specimens is produced only when the interden-

dritic liquid in the mushy zone convects and mixes with

the bulk melt. Despite extensive convection in the bulk melt

during downward growth of lead-rich (hypoeutectic) Pb-38

wt pct Sn, as evidenced by the thermal fluctuations, no

longitudinal macrosegregation is observed because the in-

terdendritic melt density profile is stabilizing. However,

during upward growth of the same alloy, the interdendritic

melt density profile destabilizes and extensive longitudinal

macrosegregation results.
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